DETERMINING THE SMALLEST NUMBER OF CONTROLS

NECESSARY TO STABILIZE THE EQUILIEBRIUM POSITION

PMM Vol, 34, N5, 1970, pp.785-795

L. K, LILOV
Sofia)
(Recieved November 27, 1969)

The problem of determining the smallest number of controlling forces necessary to sta-
bilize the motion of a controlled object is investigated, The necessary and sufficient
condition of stabilizability of the zero solution by the control of minimal dimensionality
is established for linear systems. The sufficiency criterion is extended to nonlinear sys~
tems, An example is considered,

1. Formulation of the problem, Letus consider an object whose state is
described by the phase vector z (f) = {z; (#)} (i = 1, ..., n) and whose motion is
described by the differentjal system

dz / dt = { (), fO =0

where f is a given n-dimensional vector function,

We assume that the object is controllable by a force u = {u;} (j =1, ..., 1),
where r is some number, and that the control function is variable. Let the controlling
forces iy be related to the coordinates z; by the vector differential equation

dz /dt = f(z) + 9 (z, u), oz, 0)=0 1.4
where @ is some n-dimensional vector function.

Our problem consists in determining the smallest number of controlling forces neces-
sary to stabilize the zero solution of systemn (1,1) with suitable choice of ¢. If r is this
number and @, is the.corresponding function, then there exists an r-dimensional control
u which stabilizes the solution z == O of system (1.1) for ¢ = @, ; moreover, it is then
impossible to find a function @ for which the solution z == 0 of system (1.1) can be
stabilized by means of an (r — 1)-dimensional control,

2. The solution of the problem in linear approximation, The
linear approximation for Eq. (1.1) is of the form

dz /dt = Az + Bu 2.1)
The matrix A defines the linear operator A in the n-dimensional linear space
R = {2y,..., Zp} . The following theorem holds [1].
The space R can always be decomposed into the subspaces [,, .... [, cyclical rela-
tive to the given linear operator A with the minimal polynomials ¥; (A), ..., P, (A) .

R = Il + ves + It
in such a way that ¥;(A) coincides with the minimal polynomial § (A) of the entire
space and every W (A) is a divisor of y;_; (A) (i = 2, 3, ..., ¥).

Denoting the invariant polynomials of the matrix A by i, (A), ..., i (A) ,we find
that D M ) D _, .
P (M) = "3::—1'(}7)" = i1 (A), b(M) =37 = ta (A), -
Doy ™ . .
‘Pz(l)'—'ﬁ;“'n%(k)» A =...=i, (M) =1
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Here D; (A) denotes the largest common divisor of all the ith order minors of the
characteristic matrix A; = A — AE,where E is an identity mawix (i = 1, ..., n).

Let us suppose that all the roots of some D, _, (A) have negative real parts, We can
show that system (2, 1) can then be stabilized by an r-dimensional control with suitable
choice of the matrix B.

Let b, be the generating vector of the cyclical subspace /;, The vectors by, Ab;, ...,

™71 p,, where m;is the power of P; (A), are then linearly independent and form the
basis I; (i = 1, ..., ). As our matrix B we take the mamix

B = || by, by ..oy il (2.2)

and consider the matrix

P=“ bh Abls- . -1Am’~1b1s bz» Abﬂv- . -vAm’-lbh- . -7br9 -"7Am"-ibr’ p(°+1)" * "p(ﬂ)H

S=m+...4+m (2.3)
The vectors p(°+1), . . p™ are such that det P == 0. The vectors p can always
be chosen in an infinite number of suitable ways, since the vectors b,, Aby, ...,
AT b, are linearly independent, Let us transform coordinates by means of the equa-
tion £ = Py. In the new coordinates system (2, 1) can be written as

y = P 14Py + P"'Bu (2.4)
The matrix P"*AP is the mawix of the operator A in the new basis
byyeeny A™1 by, Ly AT b, pOD, L P,

Denote the kth vector of this basis by g,.The kth column of the matix P*AP is filled
by the coordinates of the vector Ag,. But Ag, & I,for k < m, ,since I, is an inva-
riant subspace, so that the last n — m, coordinates are equal to zero, Similarly, for

my < k << my -4 mq the first mqand the last n — (m,; -+ Mms) coordinates of Agy
are equal to zero, etc, Hence, the matrix P"LA P is of the form

P,O0...0
LO Ll 0 Pz . e 0
-1 J— —_—
par= e p] o ne P @9
00 ...P
and the characteristic polynomials of the matrices P,, ..., P, are ¥, (A), ..., ¥, (A),

since the characteristic polynomial of the operator A in the case of cyclical subspaces
coincides with the minimal polynomial of the subspace relative to this operator. The
matrix P'1B=Hci’.ﬂ (i=1,...,n7=14,...,0

consists of zeros and unities, which is evident from the relation PP = E. Let us
write out the nonzero elements ¢;; ,

cu=1, emue=1, Cmamars =1,..., Cmpt..amp_ga1,r = 1 (2.6)
System (2.4) breaks down into an uncontrollable part
dy® [ dt = Lyy®, Y = |Yosrs . .., Ul (2.7)
and a controllable part, which in turn consists of the nonhomogeneous systems
dy N[ dt = Py + uze; + D (y®) (G =14,...7) (2.8)

Yo+ = "ny+...mj—1+h s Ymprom, | &* =14,0....,0}
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Here fi) (y®) is an mj-dimensional vector function whose coordinates are linear
forms of the coordinates of the vector (@); the asterisk denotes transposition,

The matrix P ;corresponds to the operator A in /; for the basis by, Aby,..., ATl ;
(=1, ..., r). Hence,

000 ... 0 —a:f,.j
100 ... 0 —ah,
Pi={0 10 ... 0 —dh, (29
000 ... 1 —a
Here ay - . - (linj are the coefficients of the minimal polynomial ¥; (A) of the

subspace I, B (A) = A"+ ay A" - ad,

i
Uuj = P1'1ym.+...+mj__1 41+ P‘znjym-i----+m,-
then, by suitable choice of the coefficients p , we can ensure that the characteristic
polynomial of system (2, 8) has any prescribed roots with negative real parts,

Thus, any solution of initial system (2.1) can be reduced at the origin-by an r-dimen-
sional control only if the zero solution Yoyy = ... = Y, = 0" for the uncontrollable

part of system (2. 7) is asymptotically stable. This is the case if and only if the charac-
teristic roots of the matrix L, have negative real parts, But

dot] A —AE} = (A). . ., (N det] Ly —AEn ]

where E, ; isan (n — o) X (n — o) identity matrix,
On the other hand,

If we set

D_ (M det| A—LE
W) M=ty = °l")n_r - I
Hence
det | Ly — AEn— || = Dnr (A) (2.10)

We have thus shown that if all the roots of D ,_, (A) have negative real parts, then
there exists a matrix B. for which asymptotic stabilization of the zero solution of system
(2.1) is possible. We have assumed implicitly that r < ¢. But if 7 > ¢, then, since
m; + ... +my = n, it follows that the zero solution can be stabilized at least by
means of a2 ¢-dimensional control. This follows from the fact that the matrix L, does
not exist in this case,

Now let us show that if D ,_,.; (A) has at least one root with a nonnegative real
part, then asymptotic stabilization by a p-dimensional (p <C r) control is impossible
for any n X p matix B,,.

Let us assume the opposite statement, i, e. that there exist vectors bys vees bp such
that the zero solution of the system
dz/dt = Az + Byu,, By=|by, . .., b (2.11)

is stabilizable,

The vectors by, ..., bp can be regarded as linearly independent; otherwise the con-
trol would in fact be k-dimensional, where & << p. Let us consider the subspace defined
by the (not necessarily linearly independent) vectors
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bh Abh « o ey An_lbl
bzv Abzv LRI | An_-lbﬁ
by, Aby, . .., A",
This subspace is invariant relative to the operator A. Consequently (by virtue of the
third theorem on splitting [1]) it can be split into cyclical invariant subspaces which

cannot be split any further and whose minimal polynomials (which are also the charac-
teristic polynomials) coincide with some of the factors in the expansion of ¥; (A), ...

e W) Po(b) = (A=) (h— h)® . . . (b RS
"pz (M = (h—M)" (A—A)™ . .. (A —A,)%
wt (x) =(A—2)" A—2Ag)" . .. (A— 2,
k2> ... >, (k=1,...,s)
Here Ay, Ay, ..., Aq are distinct roots of the equation det || A — AE|| = 0.

Since the expansion of an invariant subspace contains "cells” with minimal polynomi-
als which are powers of relatively prime monomials, let us say * — A% and (A —
— Ay)%, it follows that the invariant subspace which is the direct sum of these cells is
cyclical, In fact, if the generating vectars of the cells are ¢, and e,, then the vectors

dy—1
el? Ae11 - . e A ! el, ez, Aeg, . ey Acr—lez

can be taken as the basis of the direct sum,
The matrix corresponding to the operator A in this basis is of the form
Ko = H 0 Kz'

where the matrices K, and K, are of the same type as matrix (2. 9).
By elementary transformations we reduce the matrix || K, — AEgl, where Egpic,
isa (d, 4 ¢y) X (d; + ¢,) identity matrix, to the equivalent matrix

K 0
o &
where
10 . 0 10 0
01 . 0 01 0
Kll = 3 . . ! K21.= -------
00 ... A—nm" 00 ... (A=A

The characteristic polynomial is (A — A;)% (A — A,), and the largest common
divisor of the minors of order (d; + ¢, — 1) is, clearly, equal to unity, since we have
the minors (A — A;)% and (A — A,) which are relatively prime, Hence, the charac-
teristic polynomial of the direct sum of the cells under consideration coincides with the
minimal polynomial; in other words, this direct sum is a cyclical subspace, since the
degree of its minimal polynomial coincides with its dimensionality and the proposition
in question has been proved,

However, if the cyclical cells have elementary divisors corresponding to the same
root as their characteristic polynomials, then the invariant subspace which they form is



760 L. K, Lilov

not cyclical, i, e, it is generated by at least two vectors and their images under the ope-
rator A which are linearly independent of their originals.

In fact, let us assume that we have taken cells with the characteristic (and minimal)
polynomials (A — A,)** and (A — A\)% (¢, > d,) and the generating vectors @, and
a, ,respectively, The characteristic polynomial of the direct sum of the cyclical cells
under consideration is the product of (A —A,)°t and (A —A,)%. But it is clear that we
can take (A —A,)% as the nullifying polynomial for the whole subspace, since it nulli-
fies both cells, However, its power is ¢; << ¢; - d,, and the space cannot be cyclical,
since its minimal polynomial, being a divisor of any nullifying polynomial,is of a degtee
smaller than the dimensionality of the subspace.

The foregoing implies that whatever the vectors b,, ..., by, the characteristic poly-
nomial ¥ (A) of the invariant subspace defined by them and their images Ab,, ...,
A1 b, ..., A" b, cannot contain more than p elementary divisors corresponding
to the same root, i, e, that y (A) is a divisor of the polynomial P; (M), (A)... ¥p ().

Let f;, ..., f, be the basis vectors of the invariant subspace in question. Let us com-
plement them to the basis throughout the space by adding the vectors fq.qy, ..., f5 -
Finally, let us consider the mawix

@ =\ f1s far o1 far - Sull

Let us carry out the wransformation of coordinates z = (Dy. System (2,11) now
becomes dy/dt = DAY + OBy, (2.12)
As with (2, 5), the matrix @24d becomes

01 Oy
®-1A® =ﬂ 0 ms“

and system (2, 12) breaks down into controllabie and uncontrollable parts, The quantity
@, is the mamix of the uncontrollable part, We can show that its characteristic polyno-
mial is divisible by D,_,,: (A) , and therefore (by virtue of the above assumption con-
ceming D,_,.,(A) ) has at least one root with a nonnegative real part. This means
that the uncontrollable part of the system is not asymptotically stable and proves that
a p-dimensional (p <C r) conwol cannot effect asymptotic stabilization of the zero
solution of system (2.1) if Dy_,,;(A) has a root with a nonnegative real part.

In fact,

deb“A—XEﬂ::detﬂtb"A(D——)»Eu_—_qyl('/\,) SRR/ ¢ 3 IO W (M) L
C o e (h) = % (W) det | Dy — AEnq]

where E,_q is an (n — ¢q) X (n — q) identity matrix. But
ViAW) e W =) et (M) Dnrgn (M)

since ¥, (A) divides ¥, (A) ... p (A) (as was shown above), and since p <T, it fol-
lows that X (A) also divides $; (A)...Wr.1 (A),i.e. that

det | @y — AEn_gl = Dnrs1 (M9 (A
where 6 (A) is some polynomial,
The above results imply the following statement,
Theorem 2.1. The zero solution of system (2.1) can be asymptotically stabi-
lized by an r-dimensional control for some chosen matwix B and cannot be stabilized
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by an (r — 1)-dimensional contol for any B if and only if all the roots of the largest
common divisor D,_, (A) of the (n — r)-th order matrices || A — AE || have nega-
tive real parts, or if and only if D,_, (A) = 1, and D, _,,, (A) has a root with a
nonnegative real part,

This theorem has been formulated for the case of asymptotic stability, If we are con-
cemned with the stabilization of the zero solution of system (2. 1) to stability only, we
must require that all the roots of D, _,(A) have nonpositive real parts, that the charac~
teristic roots with zero Teal parts have simple elementary divisors only, and that
D, _,..(A) have either a root with a positive real part or a root with a zero real part
and a nonsimple elementary divisor,

The above theorem is related to [2— 5] in self-evident fashion, The latter studies show
that if the mawix B in (2.1) is such that under the transformation z = Py the matrix
L, of the uncontrollable part of the system in the new variables has roots with negative
real parts, then it is possible to ensure asymptotic stabilization of the zero solution of
(2. 1) with suitable choice of the control u. Theorem 2,1 establishes the necessary and
sufficient properties which the matrix A must have in order for a mawrix B containing
the minimum order of columns and having the above property to exist,

3, The case of a nonlinear system, Let ussuppose that the function
f (z) in (1.1) is of the form f@) = Az + 8 (@ (3.1)

where 4 is an n X n mauix and g (z) is the n-dimensional vector function {g; (z}}
(i =1, ..., n) : moreover, g, (z) begins with terms of order not lower than the second,

Theorem 3.1. The zero solution of system (1. 1) for (3.1) can be asymptotically
stabilized by an 7-dimensional control if all the roots of the largest common divisor
D, _.(A) of the (n—r)-th order minors of the matrix || A — AE || have negative real
parts,or if D, (A) = 1.

In fact, let us'choose the maumix B as in (2. 2) and effect the transformation of varia-
bles ¥ = Py, where P is the mauix defined in (2, 3). Let us consider the system

dz/dt = Az + g (z) + Bu (3.2)
or, in the new variables,
dy/dt = P7APy 4 Pg(Py)+ P'Bu

where P71 AP and P-1B are of the form (2. 5), (2. 6), respectively,

System (3, 2) breaks down in two parts

dy®w ] dt = Loy® + Lyyg® + Cyu -+ [Pig (Py)|0-
dy® | dt == Loy® + [P7g (Py)|® (3.3)

where the superscript "(1)" refers to the first (m; -+ ... 4+ m,) coordinates and the
superscript "(2)" to the last » — (m; 4- ... - m,) coordinates, By C,we denote the
e (P =|Cy¥, 0]

Setting y = My, where M isan r % (m, + ... 4 m,) matrix, we can, by suit-
able choice of M, ensure that the matrix (L, -+ C, M) has arbitrary characteristic
roots, including roots with negative real parts, Since we assumed that all of the roots of
D, _, (1) have negative real parts, it follows by (2. 10) that the first approximation of
(3. 3) is asymptotically stable ; this imples the asymptotic stability of the zero solution
of system (8.2),
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To complement Theorem 3.1 we can say that if J,_,,, (A) has at least one root
with a positive real part, then stabilization (not only asymptotic)by a (r — 1)-dimen-
sional control is impossible. The validity of this statement is self-evident from the con-
sideration of Sect, 2,

4, Example,. Let us consider a satellite in circular orbit, The equations of motion
( [61, Chapter 2) are

J1 p; +- (Jo — o) prps = 30 (Ja — T} tpotlys (1. 2, B)

Uy = RgPs— %aPy + 5005, (123, (i=1,3) 4.0
i+ =4, g; = {——-1 8::‘13)) (8=13)

Here Jy, J,, J, are the principal central moments of inertia, a;, (i = 1, 3, k = 1, 2,
3) are the relative direction cosines, and ® is the angular velocity of the center of mass
along the orbit, The symbol (1 2 3) means that the two other equations are obtainable
by cyelic permutation,

These equations have the particular solution

p=p=0pp=0ay=ayu=1 a,=a=0ay =ap=20 (4.2)

Our task is to find the minimum number of control: required to render solution (4. 2)
asymptotically stable,

Taking (4.2) as the unperturbed motion and retaining the symbols for the initial vari-
ables in designating the perturbations, we can write the linear approximation for the
equations of perturbed motion in the form

1= hos@ps — 3@thostas, hog = (Jo —Ju} / 1 {4.3)
Pr = — 30%hnaa, har = (Js — J1) [ Jq

ps'=huop, hg=(J1—Ja) /s

ta == — pp + O3 — O, d11’ == — Q13 — AN

oz’ == p1 -+ 0d1s, A1p’ == — p3 -~ G)l3p

ags’ == Wasl -+ s, 13’ = Py -+ 11 — W08

The last six equations are not independent; the a;, are related by the expressions
+ogP+antoay—1=0
(1 4 ay) ay + Byetay + a5l + @gy) = 0
ofgy + atyy + (14 @)t —1 =0

These relations enable us to determine three of the ay;, (i = 1, 3,k = 1, 2, 3} as func-
tions of the rest, For example, if the perturbations oy, [®s3ls losl “are not too large,
then we can take ay,, oy, ;3 as the independent variables,

The variables a,;, @33, ¢y can then be expressed in terms of the above variables, and
the expansions begin with terms of higher than the second order of smallness. This
enables us to take the equations

PU = hygopy — 303yt pr = —30%hy g, Py = Rpyop

a'pe = — Py~ ©OC3q, ’131' = Doy ccm‘ == D1 + [ 1e T (4.4)

as the linear approximation of (4. 1).
The characteristic matrix of this system is of the form
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—A 0 hesw — 3whes 0 0
0 —A 0 0 - SwThat 0
}215 0 — ;v 0 0 0 (4'5)

i 0 0 — A 0 @

0 -1 0 0 e A 0

0 0 —1 - 0 - A

If we assume h;, = hyy = 0, this matrix is equivalent to a diagonal mamwrix with the
elements a;;= 0 (i 5= j), 4y = Gy = Ggy = 1
Qqy == Cypp = A:, Ggg = A«‘ + w22

and in this case the zero,solution of system (4. 4) can be asymptotically stabilized by a
three~dimensional contrel in accordance with Theorem 3, 1, since D = {.
If hy, = O but hgy 5= 0, the characteristic matrix is equivalent to the diagonal matrix

a;; =0/ Q11 T Gy = Ggy T Gy = Gy = 1

ce = A(A? — 3athy)(1 + A/ @0® — 3kyA?)
and the zero solution of (4, 4) can be stabilized by a single control, since D, = 1,

ok 50808 by, Bhyy + 3hgs + 1 — Iaghay) — Ghyghyy = 0 (4.6)
the characteristic matrix can be transformed to the diagonal form
a;; = 0 (f=£7)), ay = Gy = ag3 = a4 = 1, a;, = (A* — 30%hy)
aes = (A* — 30%hy)[A* + @*(Bhgg + 1 — hyghys + 40¥hyghyy)]
and by virtue of Theorem 3.1 and the fact that D, = 1, a two-dimensional control is
sufficient for asymptotic stabilization.

Finally, if k4 == 0 and relation (4. 6) is not fulfilled, the characteristic matrix assumes

the canonical form 0i5=0 (isk)), ay = Ggg = g3 = gy = 8y = 1
ge = (M — 30%g)[A* + 0*Bhyy + 1 — hyghas)h? — dwthyphyy]
and, since D, = 1, the zero solution of system (4. 4) is asymptotieally stabilized by 2
single control in the most general case,

In practice, however, the control of minimal dimensionality can be realized only if
the last three coordinates of all the vectors & of matrix (2, 2) are equal to zero, since
the last three equations of (4. 4) are obtainable from the kinematic relations and cannot
contain controls, Such choice of the vectors & is possible in all the cases considered
above, We can demonstrate this directly,

For example, let hy, = h,; = 0. Matrix (4. 5) then becomes

A:ﬂe 0 H, Ay =

1 0 0 0 0 o
¢ -1 01, Agp = 0 0 0
o 0 0

A Aw 0 0 —t —o
In this case the stabilizing control is three-dimensjonal, and matrix (2. 2) becomes
B=|b bs bs|
We use the symbols 5}, 5{®) to denote )
K= I 21 by by |, o = I s s g

Mamrix (2, 3) for 5{* =0 is of the form



764 L. K, Lilov

P =

bﬁl) 0 0 0 bga!) b(sl) !
0 AudP  dndudl’ Al 0 0 I
Since the characteristic polynomial of the matrix || 4e3 — AZ | coincides with its
minimal polynomial, there exists an nonzero vector ¢! such that
det [V Aget? gl eV |50

setting 4ub(M =o0) b1 = 431 M), we see that it is always possible to ensure that
det P == 0 by suitable choice of 51 and 41, Hence in this case B becomes

B = bg.l) 6(21) bgn
0 00

If hyy = 0, hyy 5= O, matrix (2, 3) for 8@ = 0 is of the form
Py =k Pyg = hyy0ly, Py = —3hga0%h, pyy — 031 — hyy) Iy
Prs == Sheg0*(3hgy + 1) L, pig = Bhgs0®(Bhay + D) (4 — hyg) Is,  pyy = I
Pes = —3hyy00%l,  pyy = Wafer'ly, pgy = Iy
Piz = by Pag = @(heg — 1) I3y Py = —0¥3Bhyy + 1) 1, Poy=©® Bhn+ 1)(1 — hys) I;
Pas = @*@hez + 12 Ly, pyg = — 13, pya = 3hps0%y, pss = —Ihs® 0y
P = —l;, pa= —ol, pu= 01 — hy) ly, pes = 03k + 1)}
Pos = 0%(3hgg + 1)1 — hgy) Iy
det P = - 36 hes*el¥L2lst{hyy(has — 1)205% + (hyg + 3hes®)n?]
where only the nonzero elements have been included.

Clearly, we can always ensure that det P == 0 by suitable choice of 4, L, 3.

All the remaining cases can be verified in similar fashion, It tumns out that the con-
trol of minimal dimensionality can always be found in the form necessary for practical
realization.

The author is grateful to V, V, Rumiantsev for stating the problem and for his com-
ments and interest,
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